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Abstract--Steady heat pipe solutions with capillarity and conduction effects included are considered. A 
single layer model is studied as a singular perturbation problem, with capillary boundary layers in the 
temperature-saturation phase plane leading to new insights and results. In the geothermal context, with 
bottom heating and heat flow that is dominated by convection, phase plane trajectories of temperature vs 
saturation typically track zero capillarity (gravity-driven) solutions when they exist, one liquid-dominated 
and one vapor-dominated. The way in which choice of boundary conditions selects from these solutions is 
studied. Capillary boundary layers, not encountered in previous studies, play an important role in this 
selection process. Maximum possible lengths of heat pipes are calculated, in cases where it has previously 

been speculated that the lengths may be unbounded. 

1. INTRODUCTION 

In a heat pipe, it is possible to transfer heat with very 
little net mass flow, by having steam and liquid flowing 
in opposite directions through a porous medium in 
contact with each other. In modeling a geothermal 
reservoir, the different densities of the liquid and 
vapor phases lead to a gravity-driven heat pipe, with 
liquid flowing down and vapor travelling up. Heat 
flow is vertically upwards, due to the specific enthalpy 
of steam being larger than that of liquid water. 
Although the system is open in general, it is typical 
that net mass flux is small. Such a model has been put 
forward by White et al. [1] for a part of the Geysers 
steam field, and also applies to Larderello in Italy, 
Matsukawa in Japan and Kawah Kamojang in 
Indonesia. 

In engineering applications, the heat pipe is often 
driven by capillary pressure differences, due to satu- 
ration gradients, so that heat may flow horizontally 
or vertically downwards. The flow system is usually 
closed, with zero net mass flux. Applications include 
cold weather gloves for humans, space systems and 
very high speed computer chips [2-5]. 

In a number of studies of the heat pipe mechanism, 
it has become clear that in the gravity-driven case 
there are sometimes two solutions possible for a given 
steady heat flow, one vapor-dominated and one 
liquid-dominated. However, often only one of these 
solutions is actually obtained, in an experiment or in 
a computer study. Computer studies have involved 
solving both the steady-state problem, and the full 
time-dependent problem, which is run for long enough 
to achieve steady-state. 

A fundamental question that arises is whether both 

solutions are realistic. Recent work by Satik et al. [6] 
suggests that only the vapor-dominated solution is 
typically obtained. Also, Schubert and Straus [7] 
obtain only the vapor-dominated solution when two- 
phase counterflowing fluid overlies stationary liquid. 
However, in laboratory experiments, Udell [8], Bau 
and Torrance [4] and Cornwell et al. [5] obtain only 
liquid-dominated solutions. 

Further, Sheu et al. [9] find when numerically inte- 
grating the steady-state conditions down from the sur- 
face, no counterflow solutions exist when net mass 
flow is small. Theirs is a three-layer model, l iquid- 
two-phase-liquid, with no capillarity. This result is 
apparently directly contradictory to the above results 
of Schubert and Straus [7]. Satik et al. [6] obtain 
vapor-dominated solutions for zero net mass flow, 
when integrating upwards from a liquid layer. 

Two-phase solutions will be examined in a tem- 
perature-saturation phase plane, and the mechanism 
determining which solution is selected will become 
clear. The role played by capillary boundary layers is 
crucial, leading to a resolution of the above apparent 
discrepancies. 

This work extends recent studies in McGuinness et 
al. [10] and McGuinness [11-13]. Capillarity was not 
included in those papers, but results are consistent, 
suggesting that the mechanism of upstream diff- 
erencing studied in those papers is equivalent to intro- 
ducing a numerical diffusive boundary layer, which 
acts to select solutions in the same way as capillarity. 

The approach in this paper has been strongly influ- 
enced by the recent papers of Satik et al. [6] and 
Stubos et al. [14]. Their treatment is here extended 
and modified : 
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NOMENCLATURE 

d unit of permeability 
[1 darcy = 10 -12 m 2] 

h specific enthalpy 
hv~ latent heat of vaporization 
g gravitational acceleration 
J the Leverett J-function, 

1.417(1 - s) - 2.12(1 - s )  2 + 1.263(1 - s) 3 
k permeability 
k, relative permeability 
md millidarcy [I0 -~3 darcy] 
m~ molecular weight of liquid water 

[kg kmol i] 
u mass flux density [kg s ' m 2] 
P pressure 
Pc capillary pressure 
Q energy flux [W m-2] 
R universal gas constant 

[m 3 Pa K -~ tool 1] 
S liquid saturation 

T 
Z 

temperature [C]  
vertical distance [m]. 

Greek symbols 

fl y l / y  v 

7 dT/dP (Vv)/(h,,,dip) 
£ thermal conductivity 
)~ liquid mobility, kkrl/V~ 
)., vapor mobility, kkr~/v, 
i t dynamic viscosity 
v kinematic viscosity 
t,,J dimensionless heat flow (Qvv/(kghvtAp) 
4' porosity 
p specific density 
~- surface tension [kg s 2]. 

Subscripts 
1 liquid water 
v steam or vapor phase. 

(1) by allowing full temperature dependence of 
fluid properties ; 

(2) by showing that the results are qualitatively 
independent of the forms used for the relative per- 
meabilities and 

(3) by allowing a wider range of possible heat flow 
rates, a consequence of using a single-layer model. 

The three-layer model used in [6] limits the possible 
range of heat flow values through the heat pipe, and 
also implicitly limits solutions to those with a smooth 
transition from pure vapor to pure liquid. Other possi- 
bilities for what happens at the ends of the two-phase 
region, such as the presence of a convective higher- 
dimensional liquid flow, as seen in [15], or the presence 
of pure liquid phase in place of the vapor phase, motiv- 
ate the consideration here of the two-phase region in 
isolation, as a single-layer model. 

Satik et al. [6] consider two main cases, the heat pipe 
case (driven by capillary pressure) and the geothermal 
case (driven by gravity). The results in the present 
paper affect most significantly the geothermal case. 
The heat pipe case is already well understood (e.g. 
[21]). Note that in [6] the definitions of the heat pipe 
and geothermal cases involve the choice of boundary 
conditions when integrating the differential equations 
governing steady-state flow. This is different to the 
definitions used here, but the results presented here 
have suggested that definitions involving the physical 
driving mechanism are preferable. 

Questions have also been raised in previous studies 
[6, 15, 8] about the maximum possible length of a heat 
pipe, in the geothermal case with heating from below. 
Sondergeld and Turcotte [15] find no upper bound to 
the possible heat pipe length. Udell [8] has a theor- 

etical prediction of infinite length at dry-out, for bot- 
tom heating. In the present paper, a phase plane analy- 
sis makes it possible to calculate maximum heat pipe 
lengths for heat flow values through the critical dry- 
out value. Practical limitations on temperature range, 
like the disappearance of the distinction between 
vapor and liquid phases above critical temperature, 
lead to finite maximum possible lengths for heat flows 
below dryout values. 

The analysis in this paper is confined to per- 
meabilities greater than 1 md, which corresponds to 
heat flow dominated by convection. The effects of 
reducing permeability to values where conduction 
becomes more important are studied in a later paper 
[16]. 

Steady-state equations are presented in Section 2 as 
a pair of coupled first-order differential equations. A 
rescaling that emphasizes the importance of a small 
parameter depending on capillary pressure follows in 
Section 3. Section 4 contains a singular perturbation 
analysis of steady solutions. The implications of this 
for selection between vapor-dominated and liquid- 
dominated solutions are considered in Section 5. In 
Section 6, previous experimental, numerical and ana- 
lytical results are clarified in light of the present study. 
The generality of the qualitative results obtained here 
under a variety of choices of relative permeability 
functions is discussed in Section 7. In Sections 8 and 
9 there follows a discussion of how computer vis- 
ualizations have helped this work, and calculations of 
maximum possible heat pipe lengths. A discussion of 
when capillary pressure and gravity assist or oppose 
each other in driving the counterflow is the subject of 
Section 10. Conclusions are presented in Section 11. 
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Fig. 1, A sketch illustrating the flow geometry used in the 
mathematical model. 

2. STEADY-STATE EQUATIONS 

A steady heat flux is imposed on a two-phase region, 
with zero net mass flux. Capillary pressure and/or 
gravity can drive this counterflow, so that this for- 
mulation encompasses both engineering and geo- 
thermal heat pipes. 

The flow is one-dimensional, and inclined at an 
angle 0 to the horizontal, as illustrated in Fig. 1. Steam 
and heat flow in the positive z direction. 

Darcy's law gives the momentum balance for the 
two phases, 

kkr,( t'l ) ul = - + plgsinO (1) 
v, \ ~z  

kk~ fOPv . \ 
u v ~ _ - -  vv ~-&-z +Pvys'nO)" (2) 

Capillary pressure is taken to be 

Pc(S, T) = P v - P ,  (3) 

and the particular form for Pc is kept general at this 
point. Vapor-pressure lowering (the Kelvin effect) is 
also represented in a general way as (after ref. [17]) 

Pv = f,,pl( T, S)Ps,t( T) (4) 

where the vapor-pressure lowering factor is approxi- 
mated by 

~ -mlPc(S ,T )  "{ 
fvN = exp ( p ~ 3 A - 5 ) J  (5) 

and where Psat is the saturated vapor pressure of bulk 
liquid, obeying the Clausius-Clapeyron relation 

dP~.t Plpvhvl 
(6) 

dT  - (T+ 273.15)(p~-pv)" 

Mass and energy conservation yield 

U l + U v ~ "  0 (7) 

?T 
uvh~+ulhl = Q + 2 ~ z .  (8) 

See also refs. [7, 18, 19] for these. Pv and S are chosen 
here as the dependent thermodynamic variables. Not- 
ing that equation (4) implicitly relates T to Pv and S, 
and that Pc depends on Pv via T and on S [equation 
(3) is taken to define Pl, with Pc a known function of 
S, T], the dependencies of variables may be sum- 
marised as in Table 1. These dependencies determine 
the partial derivatives so that, for example, 

dPc aP~/'c~T OP,, OTOS~ ~Pc ~S 
dz   , vfZ-Z + os oz: + Oz  

Using these dependencies, the conservation equations 
(7) and (8) may be rearranged to obtain 

c~P~ ~tt~ (P~, S) 
- (9) 

c~z o~(Pv, S) 

0S f# (Pv, S) 
- ( 1 0 )  

0z ~(Pv,  S) 

where 

= FlF4 -FaF2 (1 l) 

Table 1. Dependencies of variables. 

Pz 

P~ 

T 

P~ s 

Z 



262 M.J. MeGUINNESS 

and 

= G I G 4 - G 3 G  2 

#t/: = HI H 4 - -  H 3 H  2 

(12) 

(13) 

~P~ ~?T 
Ft = 21+2,.-21 0T ~P,, 

, //SP~ 3P~. 8T~ 
) 

3T PT 
F~ = )oth~ + 2,,& - 2~h~ ~ ~ + 2 

& = 21h I ~ + 
~ t s )  - ~  t s  

G~ = F~ 

G: = g sin O(2~p~ + 2,pO 

G, = F~ 

Ga = Q + g  sin O(2ip~hl + 2~p,h,) 

H~ = G~ 

H~ = F~ 

H~ = G~ 

H4 = F4. 

(14) 

(15) 

(16) 

(17) 

18) 

19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Hence steady-state solutions may usefully be plot- 
ted in the P~, S (or T, S)  phase plane, as the above 
are two coupled autonomous nonlinear first-order 
differential equations. Satik et al. [6] study these equa- 
tions with particular forms for capillary pressure 
(Leverett J-function), relative permeability (perco- 
lation) and the Clausius-Clapeyron equation (vapor 
phase as ideal gas). 

Some physical meaning for the right-hand sides of 
these two coupled differential equations (9) and (10) 
can be brought out. The grouping J g ' / ( ~ g  sin 0) is an 
averaged flowing two-phase density, which controls 
the pressure gradient. The combination ~¢/,~ rep- 
resents the imbalance between gravity and capillary 
pressure. It determines how saturation must change, 
in order that capillary pressure effects and gravity 
effects add up to give the correct heat flow through 
the heat pipe. 

3. CAPILLARY BOUNDARY LAYERS 

The right-hand sides of equations (9) and (10) have 
a complicated dependence on P, and S. This depen- 
dence is simplified a little if the factor 3 & / g S  is 
extracted from the right-hand sides, and pressure is 
non-dimensionalized by a maximum pressure P0 (say 
the critical pressure, 22.12 MPa) so that the pressure 
P* is of order one. Then equations (9) and (10) 
become 

3P* Jg*(P*, S)  

?z* ff*(P*, S) 
(26) 

where 

~,S if* (P~*, S) 
e Oz* - ~ * ( P * ,  S)  

(27) 

~P~ ~T t 
oT ~ r ~ /  

A,h,-- eP~ eS q- ~'lhl~Pc-c ] (28) 

~s g s  / 

~p~ ~T 1 
~ | / ~  , 0 P ~ T  . 3 T \  + z ~ /  

~Pv) 

aS  / 

(29) 

~**=g~in0 X, 1 - ~ / + Z J ( Q / ( ~ s i n  )+  .,,,h, 

+ 2vpvh~) (30) 

l -  v , +  

,ff'* = - .q  sin'" Ol(Q/(g sin O) + 21p~h~ 

L 

(3J) 

csP~ 3T 1 

+;..p,.h,)~, l +  ~e,m/ 
~Tgs/ 

(32) 

-(2Lpl+2vpv) 
?~T 3S / 2 

1 + OPt ] 3Po 

(33) 

P* = P,./Po (34) 

z* = z/Ho (35) 

1 ?P~ 
e = P0 ~ -  (36) 

The vertical coordinate z has been non-dimen- 
sionalized by dividing by H0, which might be chosen 
to be, say, H0 = 1000 m. The non-dimensionalization 
in ref. [6] is avoided here, as it depends on the tem- 
perature or vapor-pressure. 

This form of the equations, with a small parameter 
~:, is useful if the right-hand sides are about the same 
size in magnitude. Most terms in ~ *  are clearly of 
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the same order of magnitude in size as those in 4*. 
The exceptions are considered here: 

Over the temperature range 100-300°C, numerical 
calculations reveal that the term OPdO T 0 T/OPv has a 
magnitude less than or equal to 10-9/~/k. This upper 
bound is much less than one when k >> 10 -~8 m 2, so 
for these k values the term 1 - OP~/dT 8T/OPv will be 
close to one. 

The term 

c~P~ c3T 

OT c~S 

ape 
OS 

is less that 0.1 for the temperatures, saturations and 
permeabilities from 1 d to 0.01 #d considered here, 
according to numerical calculations, and so may be 
neglected since it only appears added to the num- 
ber 1. 

The term 

dT 
2 - -  

OPv 

appears in f~* in a location that corresponds to that 
of the term 

2 gT 
OP¢ OS 
OS 

in Jog*. 
Numerical calculations show that these two terms 

are different in size, with a ratio in the range 10-103, 
increasing as temperature decreases, and practically 
independent of k. The larger term is the one in if*. 
Since both terms are associated with the conductive 
mechanism, neither is important for large enough k 
when convection dominates through the other terms. 
Convection and conduction effects become com- 
parable when 

c~T 
2 ~-~ = 2,h,. (37) 

o1% 

This occurs first (as k is reduced from 1 d say) when 
T is 100°C (since the slope of the Clausius-Clapeyron 
curve is steepest there) and k is approximately 
10-15 m 2. 

Hence for k>> 10 -t8 m s, individual convection 
terms in (9" are of sizes comparable to the convection 
terms in ~ * ,  and for k > 1 md convection will domi- 
nate heat flow. When the pressure range P0 under 
consideration is of the order of 107 Pa, the size of 
may be estimated by using the Leverett J-function 
form for Pc [20, 21] 

Pc =f~k)J(S) (38) 

to be 

~ 10-9/x/k. (39) 

This is less than 3 × 10 -2 for k > 1 md. e goes to 
zero as k increases and as capillarity decreases. Hence 
the following perturbation analysis is expected to 
apply when k > 10 -~5 m 2 so that heat flow is con- 
vection-dominated. This covers many practical situ- 
ations in porous medium flow. 

The name convection-dominated is a little mis- 
leading here, because when small values for heat flow 
are considered in a later section, another limit in which 
conduction is important is reached. Then terms with 
mobility squared are small, and heat flow is com- 
parable to conductive values. Hence in the following 
analysis conductive terms are retained, and the con- 
clusions reached are valid also for small heat flow 
rates near conductive values. 

4. CONVECTIVE HEAT FLOW 

Equations (26) and (27) are suitable for analysis 
with singular perturbation methods, e.g. [22], when 
k > 1 md. The superscript asterisks will be dropped 
in what follows. Only leading behaviour is studied 
here, that is, only the first term in each of the 
expansions 

Pv = Egnpvn S = Egnan 
n = 0  n = 0  

is calculated. 
Solutions to equations (26) and (27) have capillary 

boundary layers (inner solutions) in narrow regions 
of thickness e, and outer solutions (where gravity is 
more important) elsewhere. These are not the same as 
the boundary layers studied in [6], which are boundary 
layers in the Kelvin effect and in conduction, and lie 
within the capillary boundary layers obtained here. 
Satik et al. ([6], equations 65 and 66) do consider a 
simplified version of equations (26) and (27), with no 
Kelvin effect and limited heat flow. However, their 
outer solutions (the G = 0 contours) are very different 
from those presented here, due presumably to the 
limited heat flows that a three-layer model allows 
when the liquid phase is at the bottom, and to the 
assumption in [6] that fluid properties are independent 
of temperature. 

4.1. Outer solution 
The outer solution is valid everywhere except in 

narrow boundary-layer regions, and is obtained by 
expanding everything in equations (26) and (27) in 
power series in e and equating coefficients of powers 
of e. The leading behaviour (which may be obtained 
by setting e to zero) is : 

ozPV° ~- ~ = o (40) 
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0.0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
s 

Fig. 2. Outer (gravity-driven) solutions for steady heat pipes. 
The contours are of constant Q/k in kW dm 2. 

c¢ 
0 = ~ ,:=,. (41) 

Evaluation at e = 0 is interpreted to mean at zero 
capillary pressure. These are exactly the equations for 
a gravity-driven heat pipe which are derived directly 
from conservation of mass and energy if capillarity is 
ignored [10, 13, 23]. Equation (41) requires ~l~-0 = 0. 
This may be written 

krlk . . . .  krl 0 ~ 7' -t- krv fl s in  0 k ~'I" 

(42) 

The term sin 0 has been assumed to be non-zero. 
The case that it is zero is the already well-understood 
engineering heat pipe case. 

This equation has appeared in various forms in 
previous heat pipe studies ([6, 8, 4, 10, 12, 13], where 
it is called the dryout condition or the solvability 
condition) and constitutes an algebraic relationship 
between the imposed heat flux, pressure (or tem- 
perature) and liquid saturation. Given Q (or the better 
combinat ion Q/k), it may be solved to relate S and 
Pv0, allowing solution of the differential equation for 
pressure, equation (40). It is plotted in Fig. 2. Note 
that for k > 1 md, contours of constant Q/k are inde- 
pendent of the value chosen for k. Other parameter 
values used in Fig. 2 are listed in Table 2. Accurate 
numerical routines from the code for T O U G H 2  [24- 
26] have been used for calculations, with full tem- 
perature and saturation dependence of fluid proper- 
ties. Note that o) and 7 depend on temperature. 

Outer (gravity-driven) solutions must track the con- 
tours of equation (42) (if they exist) in the tem- 

Table 2. Default parameter values used for numerical cal- 
culations in this paper 

Parameter Value Units 

2 2.0 W m ~ C 
¢ 0.1 
kr~ S 
kr, 1 -- S 

perature-saturation phase plane. When heat flow is 
too large, outer solutions do not exist. 

Note that typically, in the geothermal case, there 
are two gravity-driven steady solutions, one liquid- 
dominated and one vapor-dominated. For large 
enough heat flows, or if heat flow is downwards, there 
are no gravity-driven solutions. For  small heat flows, 
between the two zeros of the two terms on the right- 
hand side of equation (42), there is only one (vapor- 
dominated) gravity-driven solution. This latter case 
corresponds to that studied in [7], when heat is pro- 
vided by conduction through a stationary liquid layer 
below the two-phase zone. 

4.2. Inner solution 
The inner solution applies in the boundary-layer 

regions, in which saturation is rapidly varying. Mak- 
ing the substitution Z = z/e, and calling the leading 
order inner solutions #2 and ,5 e, the leading order 
equations are 

- -  = 0 (43) 
(?Z 

~ Z  - (44) 

(45) 

That is, to leading order in e the vapor pressure is 
constant  in the boundary layers, and the saturation 
changes according to equation (44). With constant  
vapor pressure, this is a first-order autonomous ordi- 
nary differential equation in 9 °, so that 5 P moves with 
Z until a zero of c¢ is encountered, or until single phase 
conditions are encountered. Hence the inner solutions 
match naturally with the outer (f# = 0) solutions. 

5. SOLUTION SELECTION 

The above perturbation analysis indicates that 
steady heat pipe solutions have two essential charac- 
teristics, inner capillary boundary-layers with almost 
constant  vapor pressure, and outer gravity-driven 
solutions that track the contours of the expression 
f# = 0. Full solutions may consist of  one or both of 
these inner and outer approximations, depending on 
boundary conditions. 

Numerical solution of the full steady-state equa- 
tions, using the full thermodynamic dependence of 
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fluid properties, has been carried out using the pack- 
age called STRIDE ([27]), an implementation of 
singly-implicit Runge-Kutta  methods designed for 
both stiff and non-stiff systems of ordinary differential 
equations. These numerical solutions confirm the 
above comments about solution behaviour. They are 
plotted in Fig. 3. 

Solution trajectories from a variety of initial con- 
ditions and integration directions have been combined 
to generate these plots. Solutions are shown both in 
the temperature-saturation phase plane and as tem- 
perature and saturation vs depth. The zero depth value 
is arbitrary, and is different for each trajectory. Solu- 
tion trajectories have been started from a variety of 
initial conditions (temperature and saturation), at the 
zero depth, and integrated both forwards and back- 
wards in the spatial direction. Initial conditions typi- 
cally fall in boundary-layer regions, so the capillary 
boundary layers are seen as vertical lines near zero 
depth (and near the ends of trajectories) in the plots 
of saturation against depth. Positive depth values 
result for solutions following the vapor-dominated 
branch of the outer solution, and negative depth 
values for the liquid-dominated branch. 

In Fig. 3 (a) some trajectories cross directly from 
left to right. These are capillary-driven, and cor- 
respond to very short heat pipes. Others meet with a 

= 0 contour, and can be much longer. These are 
predominantly gravity-driven. Note in Figs. 3 (b) and 
(c), how narrow the capillary boundary-layer regions 
are (1-2 m) compared with the gravity-driven regions 
(usually kilometers deep). The gravity-driven regions 
track closely the f# = 0 contours, the differences being 
indistinguishable in Figs. 3 (a) and (e). 

In the geothermal situation, it is usual for tem- 
perature and vapor-pressure to increase with depth 
below ground surface. This is reflected by the fact that 
for positive og/sin 0, ~ and ~- are of one sign, so that 
~'~Pv/C3z is one-signed. Hence to proceed deeper and 
deeper below ground is to proceed in the direction of 
increasing temperature and pressure. The other case, 
that a porous medium is heated from above, is also 
possible, but there are no f# = 0 (outer) solutions for 
this case, which is the capillary-driven heat pipe. 

Boundary conditions already imposed are zero net 
mass flux, and constant heat flux. The heat flux sat- 
isfies co/sin0 > 0 if there are to exist solutions to 
~.~ = 0. Then a natural choice of initial conditions for 
the steady-state equations is to specify constant vapor- 
pressure and saturation at some initial value of z 
(z = 0 without loss of generality). This choice selects 
a unique solution trajectory in the pressure-saturation 
plane. Which solution branch of the f# = 0 curve will 
be seen, clearly depends on whether this initial value 
is imposed at the top or at the bottom of the heat 
pipe. 

Unless the initial values of pressure and saturation 
lie very close to or on the left side of the vapor- 
dominated branch of the ff = 0 contour, proceeding 
from the initial point in the direction of increasing 

vapor-pressure and temperature clearly corresponds 
to a solution that in general quickly approaches the 
liquid-dominated branch. The liquid-dominated solu- 
tion is selected by fixing vapor-pressure and saturation 
at the top end of a geothermal reservoir (or of  a 
numerical model or a laboratory experiment). The 
vapor-dominated branch may be regarded as 
unstable, not in time but in space, when integrating in 
the direction of increasing vapor-pressure, since it can 
only be obtained by a careful choice of the boundary 
values of vapor-pressure and saturation, close to that 
branch. 

Similarly, proceeding in the direction of decreasing 
vapor-pressure and temperature yields in general solu- 
tions that approach the vapor-dominated branch of 
f# = 0, unless initial conditions lie on or to the right of 
the liquid-dominated branch. The liquid-dominated 
branch may be regarded as unstable in space, when 
integrating in the direction of decreasing vapor- 
pressure. 

Note that for small heat flow rates, solutions that 
follow the f# = 0 contours correspond to almost con- 
stant saturation solutions. 

Initial conditions that lie on the wrong side off# = 0 
will approach single phase conditions. An initial con- 
dition that lies on the correct side of and very close to 
the unstable branch of f¢ = 0 will track it for some 
distance, before departing via an internal boundary 
layer to the stable branch. Hence it is possible to have 
a section of liquid-dominated heat pipe underlying a 
section of vapor-dominated heat pipe, in the geo- 
thermal context with hotter fluid lying deeper. This 
would also be obtained if an internal boundary was 
used with values of pressure and saturation specified 
between the two branches of f# = 0, and z extended in 
both directions from the internal boundary condition. 
It is not possible to have a steady vapor-dominated 
heat pipe underlying a liquid-dominated one. 

6. PREVIOUS STUDIES 

In the following subsections the implications of the 
above perturbation analysis for previous exper- 
imental, numerical and analytical studies are explored. 

6.1. Experimental results 
In [4] is reported an experiment with boiling in a 

vertical cylinder heated from below. The apparatus 
has an overlying layer of cooled water, so that solu- 
tions have a boundary condition at the top with pres- 
sure kept near atmospheric and saturation held at 1. 
Steady solutions illustrated in Fig. 3 then typically 
track the liquid-dominated branch, consistent with 
the findings of [5] illustrated in [4], with only liquid- 
dominated steady solutions observed in practice. Simi- 
larly, a water layer is maintained at the top of the 
apparatus used in [15], and the match between theory 
and experiment they obtain for non-dimensional 
steam height vs Nusselt number, relies on an earlier 
choice of the liquid-dominated solution for S. 
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It is claimed in [4] that the maximum (dry-out) heat 
flux is independent of  the height of  the porous bed. 
While there is no explicit dependence on height in the 
formula, there is dependence on pressure or  tem- 
perature through the thermodynamic quantities h~, p 
and v. Then since temperature or pressure vary with 
depth, there is a dependence on bed height, but it 
will not be seen until lengths of  the order of  km are 
attained. 

If the heat flux across the porous medium exceeds 
the dry-out value at that temperature, then the solu- 

tion trajectory will not meet the ff = 0 contour, and 
will proceed between pure liquid and pure vapor  along 
an inner capillary boundary-layer solution. This is still 
a two-phase region of  vapor- l iquid counterflow, but 
it will be relatively short. The dominant  mechanism 
driving the counter-flow is capillary pressure. 

6.2. Multi-layer models 
When it is required that there be a single-phase 

liquid region below the two-phase region, the zero net 
mass flux condition together with the one-dimensional 
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5 0 0 0  

nature of the model means that heat flow in this two- 
layer model is restricted to values up to what may be 
conducted across a quiescent liquid layer, as explained 
in [7]. This corresponds to the coefficient of kr~ [in 
equation (42) for c~ = 0] being less than or equal to 
zero, or 09 ~< sin Opl2V/k. In this case there is only one 
or no outer solution branch. A typical example of the 
phase plane trajectories is illustrated in Fig. 4. There is 
only one outer solution branch, with small saturation 
values (vapor-dominated). Saturation varies rapidly 
in narrow boundary layers in the first metre of depth, 
then changes only slowly as it tracks the outer solu- 
tion. Although not shown in this figure, trajectories 
can also approach the outer solution from the left in 
the phase plane, that is, from saturation values below 
1.0 × 10-5, in the direction of decreasing temperature. 

Note that solutions can only approach the vapor- 
dominated outer solution in a direction of decreasing 
temperature. Hence for any model with a quiescent 
liquid layer below, it is necessary in general to specify 
the boundary values of pressure and saturation at the 
hotter (lower) end, if it is hoped to obtain a steady 
solution that is gravity-driven over any appreciable 

distance. If boundary conditions are specified at the 
cooler (upper) end, then very special boundary values 
of pressure and saturation (that lie on the appropriate 
contour of f# = 0) must be chosen if the solution is to 
track the gravity-driven outer solution for any 
appreciable distance. 

The two-layer modelling in [7] has boundary con- 
ditions imposed at the hotter lower end, with a two- 
phase region overlying a quiescent liquid region. Satu- 
ration is carefully chosen to lie on the single (vapor- 
dominated) f9 = 0 contour, and solutions track this 
branch closely. 

A three-layer model with liquid at top and bottom 
is used in [9]. They find no two-phase region for zero 
net mass flux. This is consistent with above results, 
which imply that a solution with an appreciable two- 
phase region is difficult to obtain when boundary con- 
ditions are imposed at the cooler end, as in [9]. This 
solution would have a jump in saturation at the cooler 
end, at the interface with the pure liquid phase. Such a 
jump would not be supported with capillarity present. 
There is in fact no solution that smoothly connects 
from S = 1 to S = 1 in the phase plane. Capillary 
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Fig. 4. Typical solution trajectories (a) in the saturation- 
temperature phase plane and (b) as saturation vs depth, for 

small heat flow Q/k = 1 W dm- 2. 

effects are not included in [9], but it is possible that 
the upstream differencing they use for convective 
terms has the same effect as capillarity, introducing 
narrow boundary layers ([10, 12, 13]). 

In [6] the model is a three-layer one, with liquid 
at one end and vapor at the other. Capillarity and 
conductive effects are studied. Numerical  integrations 
are carried out starting from the vapor end. When the 
liquid end is at the bottom, heat flow rates are restric- 
ted to values such that only one solution branch of  
f# = 0 exists, vapor-dominated as discussed above. 
When the vapor end is at the bottom, this restriction 
is lifted, but since integration starts at S = 0, only 
vapor-dominated solutions are seen, consistent with 
comments above. 

A curious singularity in the dry-out heat flux is 
introduced and studied in [6]. It is there concluded 
that for small enough heat flows, or small enough 
permeabilities, trajectories in the temperature-satu- 
ration phase plane are ill-behaved, and the existence 
of  steady solutions is argued against. This seems to be 
due to the fact that these trajectories do not cross all 
the way from vapor to liquid conditions, and reflects 
the limitation imposed by requiring a three-layer 
model. For  larger permeabilities the singularity pre- 
sented in [6] is simply due to the appropriate ff = 0 
contour in the temperature-saturation phase plane 
growing from a small closed shape until it extends all 
the way from (say) 100°C to the critical temperature, 

as heat flow is reduced. Then trajectories cannot cross 
all the way from S = 0 to S = l, and no three-layer 
solution exists. As permeability is reduced the (¢ = 0 
contours behave in a similar manner, as discussed in 
a later paper ([16]). 

7. GENERALITY OF RESULTS 

These results are qualitatively independent of  the 
particular form chosen for the relative permeability 
functions. In particular, the ff = 0 contours have the 
same general shape, for a variety of  choices of  relative 
permeabilities, as illustrated in Fig. 5. For  smooth 
enough monotonic  relative permeability functions, 
this may be understood by considering more closely 
the possible solutions to equation (42). The left and 
right sides of  this equation are sketched in Fig. 6. The 
term kr]kr,., must rise from and return to zero, with a 
single maximum as illustrated if the relative per- 
meability functions are smooth enough. The right side 
of  equation (42) is a linear combination of  the relative 
permeabilities, the coefficients 

and 

b = fl sinO k '] 

depending on vapor-pressure and heat flow. Hence 
the qualitative way in which the left and right sides 
intersect is not  dependent on the particular form 
chosen for the relative permeability functions, pro- 
vided they are smooth enough and vary monotonically 
in the usual way between 0 and I. To further illustrate 
this, Fig. 5 shows ~ = 0 contours calculated explicitly 
for various choices of  these functions. The functions 
used are detailed in Appendix A. The contours of  
constant Q/k (kW dm -'~) do not vary with k for per- 
meabilities greater than l md. A value of  k = 1 d has 
been used in these plots, and residual saturations Sr 
and S,r have been set to zero. In the Sandia curves, 6 
has been set to 0.5. 

8. VISUALIZATION STUDIES 

The complicated nature of  the right-hand sides of  
equations (26) and (27) has prompted the use of  vis- 
ualization methods to explore and verify their nature. 
Of  particular interest is the slope of  solutions in the 
saturation-pressure phase plane. The equations are 
rearranged into the form (leaving out the asterisks) 

t)S 
t~Pv - ~9~ (46) 

The (# = 0 contours then indicate where the solu- 
tion slopes, given by the right-hand side of  equation 
(46), are zero. Note  that ~ cannot take zero values for 
bot tom heating (Q/sin 0 > 0). The size of  the solution 
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(e) 
Fig. 5 continued. 

slopes is inversely proportional to the size of ~:, indi- 
cating the usefulness of  the perturbation approach 
taken above. Visualizations have involved calculating 
the right-hand sides of  equation (46) for a range of  
values of  vapor-pressure, saturation and heat flow, 
and viewing these slopes as scalar data values in a 
three-dimensional space with coordinates of  vapor- 
pressure, saturation and heat flow over permeability. 
A Silicon Graphics Iris Indigo workstation was used 
to do the calculations and the visualizations, using the 
Iris Explorer software. An isosurface is put through 
zero values of  slope, and level values of  this represent 

the ~,q = 0 contours. Two-dimensional slices with col- 
outed contours representing slope value were moved 
freely about the 3D region while viewing them on 
screen, to ensure no unexpected values were present. 
In this way, it was possible to quickly verify the per- 
turbation approach used above, for large enough per- 
meabilities. In particular, the ~ = 0  isosurface 
remains invariant when permeability is varied, and 
the slope values taken are consistent with the predicted 
form of e in equation (39). These visualizations were 
also useful for investigating what happens as per- 
meability is reduced below the value 10 -j5 m 2 and 
conduction becomes more important,  the subject of  a 
later paper ([16]). Figure 7 illustrates in black and 
white the kind of  information available in these vis- 
ualizations. 

9. LENGTH OF HEAT PIPES 

The lengths of geothermal heat pipes may be esti- 
mated in the bottom heating case, by using the outer 
solution and ignoring the relatively narrow boundary 
layer. This is the case in which it has been speculated 
that the maximum length of  the heat pipe may be 
infinite ([6, 15, 8]). As may be seen from Fig. 2, when 
heat flow is small enough that Q/k < 0.8 kW dm 2 
the outer solutions can extend below 100°C. A con- 
sideration of  the form of equation (42) for (q = 0 
contours reveals that these contours must all close as 
critical temperature is approached from below. This 
is due to the latent heat of  vaporization vanishing at 
critical temperature, where the distinction between 
phases vanishes, and o) becomes unbounded. So natu- 
ral bounds on temperature range are 100-371~C, for 
geothermal systems. In the calculations performed 
here, the thermodynamic routines used lose their val- 

I 
0 

0 S 0 S 

akrl +bk r v  

0 

Q i n c r e a s i n g  

0 S 1 

Fig. 6. Sketches of the shapes of the left and right sides of the equation (42) for outer solutions, These 
shapes are qualitatively correct for all of the major forms of relative permeabilities in the Appendix. 



Geothermal heat pipes 271 

350 

~_lOO0 
| 

100 0 

1 

I 

350 T 100 I 

I 
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idity above 350°C, so this has been used as the upper 
temperature limit here. 

Maximum heat pipe length has been calculated by 
first expressing equation (40) in the form (dropping 
the zero subscripts) : 

dP 

0z 

where 

- -  - -  - -  ( p } g  sin 0 (47) 

~,~p~ + 21Pl 
( P ) - -  2v+2, (48) 

is an effective flowing two-phase density. Capillarity 
has been set to zero, consistent with the nature of 
the perturbation approximation, so that P = Pv = P~. 
Then the maximum heat pipe length is 

SdP (49) 

where the integral is taken along one of the two bran- 
ches of the appropriate ~ = 0 contour, either over 
the pressure range corresponding to the temperature 
range 100-350°C, or from one extreme end of the 
contour to the other, whichever is the shortest. So 
there are in general two values for this length, depend- 
ing on whether the liquid or the vapor-dominated 
branch is chosen. 

The maximum possible length varies with Q / k  and 
with sin 0, as illustrated in Fig. 8. One effect of reduc- 
ing sin 0 below 1 (tilting the column down from ver- 
tical) is to reduce the maximum heat flow that may be 
supported by gravity-driven counterflow. This also 
leads to the reduction in maximum lengths observed 
near maximum heat flow, by shrinking the elliptically- 
shaped contours ~ = 0. But the dominant effect at 
lower heat flow values arises from the inverse depen- 
dence of L on sin 0 in equation (49), seen in the 
increase in L as sin 0 approaches zero. At lower heat 
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flow values, the contours are almost vertical, and close 
to either immobile liquid or immobile vapor  values, 
so that changes in contour location do not much affect 
average flowing density. 

10. SATURATION-INCREASING OR 
DECREASING WITH DEPTH 

An unusual feature of  the interior shocks or bound- 
ary layers observed between the f# = 0 contours is that 
saturation increases with increasing temperature or 
vapor-pressure, rather than decreasing as is charac- 
teristic for larger heat flows. 

In the usual situation, a liquid saturation that 
decreases with increasing temperature or pressure is 
a feature of  counterflow that is driven by capillary 
pressure changes. As liquid saturation decreases, 
capillary pressure increases, so that liquid pressure 
decreases, driving liquid in the direction of  saturation 
decrease. This is the direction of  increasing tempera- 
ture. In this case, capillary forces are augmenting grav- 
ity drive. The regions in the phase plane that this 
occurs are shaded in Fig. 9. 

In the interior shock, saturation changes are 
reversed, so that capillary forces oppose gravity 
forces. The unshaded regions in Fig. 9 where this 
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Fig. 9. Regions in the temperature-saturation phase plane 
are shaded where capillary forces assist gravity forces, for 

two different values of Q/k (kW dm-2). 

occurs are regions where if gravity was the only factor, 
the steady heat flow would be greater than the 
imposed boundary value. So capillary acts to counter 
this. In the shaded regions gravity alone would lead 
to a steady heat flow that is less than the value imposed 
at the boundary, so that capillary forces act to boost 
the heat flow here. 

11. SUMMARY 

Steady counterflow of steam and liquid through a 
porous medium has been re-examined, using a single- 
layer model and singular perturbation techniques, 
concentrating on the case that convective heat flow is 
dominant. Typically, solutions move rapidly along 
capillary boundary layers, and track one of the two 
possible gravity-driven solutions, vapor-dominated or 

liquid-dominated. Which solution will be seen 
depends on boundary conditions. If pressure (or tem- 
perature) and saturation are fixed at the top of the 
porous medium, then typically a liquid-dominated 
solution is obtained. If pressure (or temperature) and 
saturation are fixed at the bottom of the porous 
medium, then typically a vapor-dominated solution 
is obtained. It is theoretically possible for a liquid- 
dominated counterflowing region to underlie a vapor- 
dominated region, with an internal capillary boundary 
layer between, but it is not possible in terms of this 
steady one-dimensional model to have the vapor- 
dominated counterflow underneath the liquid-domi- 
nated counterflow. 

This has implications for numerical simulations of 
geothermal reservoirs, for the boundary conditions 
on actual geothermal reservoirs, and for laboratory 
experiments. When the reservoir or experiment is open 
at the top, or in communication with liquid at the top, 
a liquid-dominated steady heat pipe is to be expected. 
When the reservoir or experiment is open at the 
bottom, or in communication with a vapor or liquid 
region there, a vapor-dominated heat pipe is the 
expected steady-state. 

With these insights, confirmed by detailed numeri- 
cal solutions and by computer visualizations of solu- 
tion slopes in the phase plane, it has been possible to 
understand and explain the varying numerical, exper- 
imental and analytical results that have been obtained 
in the past. It has also been possible to generalize 
these results to include a variety of forms for relative 
permeability functions. 

Finally, maximum possible lengths for gravity- 
driven heat pipes have been calculated for different 
values of heat flow, and the effect of different angles 
of tilt of the heat pipe has been studied. 

This analysis is limited to permeabilities above 
1 md, and a further paper is planned to consider the 
effects of reducing permeability below this value• 
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APPENDIX: RELATIVE PERMEABILITY CURVES 

This appendix contains expressions for the relative per- 
meability functions used to help check the generality of  the 
approach used in this paper. Outer solutions are plotted in 
Fig. 5 for each of these functions. These curves have been 
taken from [25]. 

Linear functions 
k~ = S  k , , -  1 - S  

Core3 curves 
krl = ( S * )  4 kr, -- (1 - -8 ' )2 (1- - [S*]  2) 

where S* = (S SO~( 1 - S,. - Svr) and S~ is the residual liquid 
saturation, S,~ is the residual vapor saturation and 
Sr+Svr < 1. 

Grant's curves 
k r l = ( S * )  4 kr~= ( l - k r 0  

where S* is as defined above. 

Fatt and Klikq{];s" eurves 
krl = (S*) 3 kr, = ( l - - 8 * )  3 

where S * =  ( S - S r ) / ( I - S 3  and S~ is the residual liquid 
saturation. 

Sandia curves 
( , l S * {  ' l ( l  [ 8 " ]  I ~i)6} 2 S ( S  s 

k~t = t ;  S~> S~ 

k~,. = 1-k~l 

where S* = (S-Sr ) / (S~r-S t ) ,  Sr is the residual liquid satu- 
ration and Svr is the residual vapor saturation, 


